R Data Cleaning Functions
Data cleaning is an essential part of data analysis. R provides various functions to handle missing data, remove duplicates, and transform data types.
Key Topics
Handling Missing Data
# Removing rows with missing values
cleaned_data <- na.omit(data)
# Checking for missing values
anyNA(data)
Note:
Use
na.omit() to remove rows with NA values and anyNA() to check for missing values.
Removing Duplicates
# Removing duplicate rows
unique_data <- unique(data)
Note:
Use
unique() to remove duplicate rows from the data.
Key Takeaways
- Use
na.omit()to remove rows with missing values. - Use
anyNA()to check for missing data in your dataset. - Use
unique()to remove duplicate entries from your data.